On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
نویسندگان
چکیده
We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, is established to construct a positivity preserving limiter for the finite volume and DG methods with first order Euler forward time discretization solving one dimensional compressible Euler equations. The limiter can be proven to maintain high order accuracy and is easy to implement. Strong stability preserving (SSP) high order time discretizations will keep the positivity property. Following the idea in [24], we extend this framework to higher dimensions on rectangular meshes in a straightforward way. Numerical tests for the third order DG method are reported to demonstrate the effectiveness of the methods. AMS subject classification: 65M60, 76N15
منابع مشابه
Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملPositivity-preserving high order finite difference WENO schemes for compressible Euler equations
In [19, 20, 22], we constructed uniformly high order accurate discontinuous Galerkin (DG) which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics. The technique also applies to high order accurate finite volume schemes. In this paper, we show an extension of this framework to construct positivity-preserving high order essentially non-oscillatory (E...
متن کاملMaximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments
In an earlier study (Zhang & Shu 2010b J. Comput. Phys. 229, 3091–3120 (doi:10.1016/ j.jcp.2009.12.030), genuinely high-order accurate finite volume and discontinuous Galerkin schemes satisfying a strict maximum principle for scalar conservation laws were developed. The main advantages of such schemes are their provable high-order accuracy and their easiness for generalization to multi-dimensio...
متن کاملPositivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms
In [16, 17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions),...
متن کاملA minimum entropy principle of high order schemes for gas dynamics equations 1
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy [11]. First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes [6] also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010